Skip to main content
Level 4 Higher National Certificate

HNC Electrical and Electronic Engineering

Delivering high level, industry-led training courses is what we do. As an engineering provider of advanced technical and academic skills, we work closely with employers to nurture and develop the employees they need for the future.

The BTEC Level 4 HNC Qualification in Engineering is a higher level programme aimed at developing a greater understanding and technical capability of engineering processes.

We provide employees with more than just a qualification. We develop both their industry skills and knowledge for immediate application in the workplace which maximises return on investment.

HNC information

  • Entry requirements

    Ideally you will have completed a Level 3 qualification in engineering or equivalent.

  • Where will I study?

    Training 2000 Blackburn

  • Duration

    • 2 years - one day per week
    • Course costs: £2500 (+VAT) per academic year
Our HNC starts in September each year
Face-to-face tutorials
Flexible day delivery to minimise effect on employer
Opportunities to develop workplace projects within employers

What you'll learn

0

Engineering Design
The aim of this unit is to introduce students to the methodical steps that engineers use in creating functional products and processes as an individual or part of a design team; from a design brief to the work, and the stages involved in identifying and justifying a solution to a given engineering need.
Among the topics included in this unit are: Gantt charts and critical path analysis, stakeholder requirements, market analysis, design process management, technical drawing, modelling and prototyping, manufacturability, sustainability and environmental impact, reliability, safety and risk analyses, and ergonomics.
On successful completion of this unit, students will be able to prepare an engineering design specification that satisfies stakeholders’ requirements, implement best practices when analysing and evaluating possible design solutions, prepare a written technical design report, and present their finalised design to a customer or audience.

Engineering Mathematics
The aim of this unit is to develop students’ skills in the mathematical principles and theories that underpin the engineering curriculum. Students will be introduced to mathematical methods and statistical techniques in order to analyse and solve problems within an engineering and manufacturing context.
On successful completion of this unit, students will be able to employ mathematical methods within a variety of contextualised examples, interpret data using statistical techniques, and use analytical and computational methods to evaluate and solve engineering and manufacturing sector problems.

Managing a Professional Engineering Project
This unit introduces students to the techniques and best practices required to successfully create and manage an engineering/manufacturing project designed to identify a solution to an engineering need. While carrying out this project students will consider the role and function of engineering in our society, the professional duties and responsibilities expected of engineers together with the behaviours that accompany their actions.
Among the topics covered in this unit are: roles, responsibilities, and behaviours of a professional engineer, planning a project, project management stages, devising solutions, theories and calculations, management using a Gantt chart, evaluation techniques, communication skills, and the creation and presentation of a project
report.
On successful completion of this unit, students will be able to conceive, plan, develop, and execute a successful engineering project, and produce and present a project report outlining and reflecting on the outcomes of each of the project processes and stages. As a result, they will develop skills such as critical thinking, analysis, reasoning, interpretation, decision-making, information literacy, and information and communication technology, and skills in professional and confident self-presentation.

Mechatronics
Among the topics included in this unit are: consideration of component compatibility, constraints on size and cost, control devices used, British and/or European standards relevant to application, sensor types and interfacing, simulation and modelling software functions, system function and operation, advantages and disadvantages of software simulation, component data sheets, systems drawings, flowcharts, wiring and schematic diagrams.
On successful completion of this unit students will be able to learn about the basic mechatronic system components and functions, designing a simple mechatronic system specification for a given application, appropriate simulation and modelling software to examine its operation and function, and solving faults on mechatronic systems using a range of techniques and methods.

Mechanical Principles
The aim of this unit is to introduce students to the essential mechanical principles associated with engineering applications. Topics included in this unit are: behavioural characteristics of static, dynamic and oscillating engineering systems including shear forces, bending moments, torsion, linear and angular acceleration, conservation of energy and vibrating systems; and the movement and transfer of energy by considering parameters of mechanical power transmission systems.
On successful completion of this unit students will be able to learn about the underlying principles, requirements, and limitations of mechanical systems.

Production Engineering for Manufacture
This unit introduces students to the production process for key material types; the various types of machinery used to manufacture products and the different ways of organising production systems to optimise the production process; consideration of how to measure the effectiveness of a production system within the overall context of the manufacturing system; and an examination of how production engineering contributes to ensuring safe and reliable operation of manufacturing.
On successful completion of this unit students will be able to learn about the role and purpose of production engineering and its relationship with the other elements of a manufacturing system; most appropriate production processes and associated facility arrangements for manufacturing products of different material types; and designing a production system incorporating a number of different production processes.

Quality and Process Improvement
This unit introduces students to the importance of quality assurance processes in a manufacturing or service environment and the principles and theories that underpin them. Topics included in this unit are: tools and techniques used to support quality control, attributes and variables, testing processes, costing modules, the importance of qualifying the costs related to quality, international standards for management (ISO 9000, 14000, 18000), European Foundation for Quality Management (EFQM), principles, tools and techniques of Total Quality Management (TQM) and implementation of Six Sigma.
On successful completion of this unit students will be able to illustrate the processes and applications of statistical process, explain the quality control tools used to apply costing techniques, identify the standards expected in the engineering environment to improve efficiency and examine how the concept of Total Quality Management and continuous improvement underpins modern manufacturing and service environments.

Digital Principles
The unit introduces digital principles and the two main branches of digital electronics, combinational and sequential. Thus, the student gains familiarity in the fundamental elements of digital circuits, notably different types of logic gates and bistables. The techniques by which such circuits are analysed, introduced, and applied, including Truth Tables, Boolean Algebra, Karnaugh Maps, and Timing Diagrams. The theory of digital electronics has little use unless the circuits can be built – at low cost, high circuit density, and in large quantity. Thus, the key digital technologies are introduced. These include the conventional TTL (Transistor-Transistor Logic) and CMOS (Complementary Metal Oxide Semiconductor). Importantly, the unit moves on to programmable logic, including the Field Programmable Gate Array (FPGA). Finally, some standard digital subsystems, which become important elements of major systems such as microprocessors, are introduced and evaluated.
On successful completion of this unit students will have a good grasp of the principles of digital electronic circuits, and will be able to proceed with confidence to further study.

Next steps

On completion of this course you may want to consider the following options to further your career.

Where can you progress to?